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The goal of our project was to create a program that has very similar functionality when 
compared to the popular app, Shazam. Shazam is an app available today that listens to small 
snippets of a song, recognizing the song even in the presence of background noise. Our program 
is similar to Shazam, but with a much smaller database of songs and processing power. The 
program we developed in MATLAB compares a snippet a song input to a database of mp3 files 
that we created, matching the song to the one in the database. By looking at the “score” of each 
song, we can determine which song in the database is the song in the snippet. The “score” will be 
explained later in the paper, but it is a number that ranges from 0 to 1; the closer you are to 1, the 
closer you are to a match. We then tested how the song signal functions under different 
conditions by applying various filters to it at the end. 
 

We had to develop a myriad of scripts in order to create, test, and implement the 
program. In order to read in songs to MATLAB, we had to complete a script called 
“Read_Songs.m”. This script would allow us to read into MATLAB the samples from the song’s 
mp3 file. The read_song script takes in an input of a five second song snippet and stores it into a 
matrix called Y. More specifically, the song takes in a snippet from the 60 seconds to 65 seconds 
in the song. This matrix Y contained 220,501 rows and 2 columns. We know this because the 
song had a sampling rate of 44100  ​and was read for 5 seconds. There were only 2second

samples  
columns in this matrix since there are only two stereo channels for the signal. The sampling rate 
is also stored into a variable, called FS, so we can check that the sampling rate of the song is 
44100 . The first part of the read_song script averages together the two stereo channels forsecond

samples  
each row and stores them into a variable called y. We do this to create a mono signal to deal with 
instead of two stereo channels. We then remove the DC offset of the signal by subtracting the 
mean value of the mono signal from the mono signal for each sample of our mono signal and 
store it back into y. We do this to improve the effectiveness of the processing of our songs. At 
the end of the script, we resampled the song and stored it into a variable called y1. We also noted 
that when we resample, our sampling rate becomes one fifth of what it used to be because when 
y = (x,p,q), the length of the result y is .  After completing the “read_song.m” function, we ranq

p  
the function on the command line with one of the mp3 files in our database as the parameter and 
made sure that the output of the function had one row. This confirmed that we averaged together 
the two stereo  
channels together correctly.  
 

To fully test our read_song function and the resampling that occurs at the end of the 
function, we developed a script called “test_resample.m”.  In this script, we created a signal x, 
the sum of two cosine signals, to test our resample function on. We then created two different 
resampled signals based upon our original signal. One sample was when the signal was 
resampled without aliasing, and one where the signal was resampled with aliasing. We computed 
the magnitude for each of the three signals and plotted them vs. frequency in Hertz to verify that 
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we were performing our test correctly. These graphs can be seen in Figures 1-3. We then 
compared those signals to the samples provided by a song from our database that was read in and 
stored into vector Y. We also removed the “DC offset” of vector Y before plotting it and 
comparing the magnitude of the vector to the magnitude of our original sum of sinusoids. The 
DFT of vector Y can be seen in Figure 4.  Lastly, we also compared our resampled sum of 
sinusoids that has no aliasing to the resampled signal of Y that has no aliasing. This comparison 
is shown when you compare Figure 5 to Figure 2.  
  

 
Figure 1: Signal without resampling  

 
Figure 2 : Signal resampled without aliasing 
 

 

Figure 3: Signal resampled with aliasing 
 

 

Figure 4: Song snippet vector 
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Figure 5:  Song snippet vector resampled without aliasing  

In order to confirm that our graph was outputting correctly, we did a few calculations. 
For our sum of sinusoids, the first frequency, f1, was 3000 Hz and the second frequency, f2, was 
10,000 Hz to create the equation . The DFT of this signal can be cos(2πf t) cos(2πf t)x =  1 +  2  
seen in figure 1. Since the DFT of a cosine signal is just a delta function at the cosine signal’s 
frequency, we were able to confirm that the first graph was outputting the correct information. 
Our second plot had the original signal re-sampled without aliasing, the only peaks that we 
expected to show up were at positive and negative 3000 Hz, which worked perfectly. This is 
because the peak at 10,000 Hz was cut out since it was greater than Fs/2. The difference between 
figure 2 and figure 3 was that figure 3 contained our aliased signals as well. Because of this, we 
knew that we not only should see peaks at negative and positive 3000 Hz, but also see peaks at at 
positive and negative 1180 Hz. This is because our peak at positive and negative 10,000 Hz 
should have peaks a distance equivalent to the sampling rate, 8,820 Hz, away from it. 

. We then plotted the DFT of a song from our database and0000 Hz 8820 Hz 1180 Hz 1 −  =   
the DFT of the resampled song. To verify that we were seeing what we were supposed to, we 
checked to make sure that all signals over 4,410 Hz were not in the resampled plot. This is 
because the resampled plot of our song was supposed to contain no aliasing. As one can clearly 
see by looking at figure 5, our graphs outputted exactly what we wanted it to.  

 
The next step in order to create our “Shazam” program was to create a function, that can 

compute a signal’s spectrogram. To start off, we created the STFT function with the parameters 
of an input signal, block size, step size, zero-pad length, and sampling rate. This function would 
output a matrix that holds the result of STFT, a vector holding the time values, and a vector 
called the frequency values. After defining the function, we had to do initial checks to confirm 
that the user did not input any impossible inputs. We checked that the user inputted  a block size 
that is less than the zero-pad length, but greater than the step size​. ​If the block size was less than 
the step size, then we wouldn’t be able to read any samples and if the block size was greater than 
the zero-pad length then there probably would not be any point in zero-padding at all.​ ​After 
performing the initial checks to confirm that we have inputs that can work in the real world, we 
created an indexing matrix to store index through our signal matrix. We do this so that we can 
obtain “blocks” of samples from our song in our signal matrix. Doing this will allow us to reduce 
the amount of smearing we have. In  order to create the indexing matrix, we created two vectors 
that we would add together. The signal matrix was created by using the indexing matrix to obtain 
“blocks” of samples . To test this command, we ran the STFT function with correct parameters in 
order code to generate a spectrogram of the 5-second snippet at the end. This spectrogram is 
shown in figure 6. The spectrogram appeared to be correct, but the only way to know for certain 
that STFT was working correctly was to perform further testing. Additionally, one can notice 
that we only have half the values from the original fourier transform function as it is not mirrored 
in the spectrogram of the song. 
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Figure 6: Spectrogram of a song 

 
To perform further testing of this command, we created a test script called 

“test_STFT.m”. The purpose of this script was to ensure that our STFT command was outputting 
the correct information. In order to test this, we created two different sinusoids to plot on a 
spectrogram. The first sinusoid had a constant frequency and the second sinusoid changed 
frequencies halfway through the signal’s duration. At first, we were stumped as to how we would 
create a sinusoid that changes frequencies halfway through its duration. Our solution was to 
create a vector that would hold the value of 1 for the first half of it and the value 2 for the second 
half. We created this vector of 1s and 2s and made it the same size as our time vector so that we 
could bitwise multiply the two together in order to force a change in frequency halfway through 
our sinusoid. Plotting these two sinusoids confirmed that we were outputting the correct values. 
We knew this because our starting frequency for both signals was 1500 Hz, and since our 
frequency varying sinusoid just doubled its frequency halfway through, we knew the second 
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spectrogram should just go from a straight line at 1500 Hz to a straight line at 3000 Hz. You can 
see the two spectrograms in figures 7 and 8. 
 

 
Figure 7: A sinusoid graph plotted at 1500 Hz. 

 
Figure 8: A sinusoid plotted at 1500 Hz and then increases to 3000 Hz halfway through the sinusoids duration 

 
Since we knew that our STFT function worked properly, we implemented the STFT 

function into our partially completed “fingerprint.m” file to complete the fingerprinting process. 
The fingerprinting process found local peaks of the magnitude of the output of our STFT 
function. If the peak was less than the calculated threshold, the peak was discarded. After 
discarding the local peaks, our function would plot the remaining peaks onto a spectrogram. 
These peaks appear on the graph as small blue rectangles. These peaks can be seen throughout 
the spectrogram of a song from our database, shown in figure 9.  As one can clearly see, there are 
many peaks in the spectrogram, even after eliminating the local peaks whose magnitude was less 
than the threshold. This is because there are 44100 samples every second that our song is listened 
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to and since our input to the STFT function is a 5-second song snippet, there are 
 ​. ​Since there are so many samples, there obviously will be a lot of peaks as4100  4 * 5 second

samples  
well! 
 

 
Figure 9: A spectrogram of a 5-second snippet of a song from the database with local peak locations indicated by blue rectangles 
 

In order to determine which song our 5-second snippet input was from, we created the 
last function called “ID_Song.m”. The function would compare our 5-second song snippet to 
every song in our database and would store the “score” in a row vector, showing the user how 
closely the song and song snippet matched. An output of 1 or very close to 1 indicated that the 
song snippet was from that song in our database.  The further that the “score” of a song was 
when compared to our song snippet, the less likely that song snippet was from that specific song. 
In order to perform this task, we downloaded random 21 random mp3 files that we would use as 
our database. We stored the each song’s samples from our database into a matrix called P. We 
then took our 5-second song snippet and compared it to each song’s samples to determine a 
“score” for each song in our database. To check to see if our newly created function was 
outputting the proper information, we ran different 5-second snippets of mp3 files into the 
ID_Song function and made sure that the output was 1 only when the 5-second song snippet was 
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compared to the song it is from. The score of every other song from our database should be close 
to 0, if not 0. Figure 10 shows our group testing the ID_Song function in the command line to 
make sure that the “Score” vector is 1 for only one song and has very low values when the 
snippet is compared to the rest of the database. As one can clearly see, our ID_Song function was 
properly working. 
 

 
Figure 10: Two tests of ID_Song.m and the output of the function. 

 
After completing the “ID_Song.m” function, the mimicked “Shazam” app was complete. 

However, since we knew that our program was not going to always be used in ideal conditions, 
we created a few functions to test our program under different conditions. The first filter we 
created to test the ID_Song function with was a lowpass filter. A lowpass filter does exactly what 
it sounds like; it only allows lower frequencies to pass through and cuts off all high frequencies. 
Our lowpass filter would output  a vector called “Score” which would store the “Score” of each 
song, similarly to the way it did in ID_Song,  after being put through a low-pass filter. In order to 
plot our low-pass filter, we needed to calculate the frequency vector and response vector of our 
5-second song snippet. We also had to make sure that we plotted our frequency vector in hertz 
and our response vector in dB to show the lowpass filter of our song snippet. To calculate these 
two vectors, we had to use a command called “freqz” and input in a vector of coefficients, which 
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we named b, that was the values of the numerator and denominator coefficients of our frequency 
response. After performing the necessary calculations, we plotted our lowpass filter to verify that 
it not only looked like a lowpass filter, but also determine that the correct processes were 
occurring at our stopband and passband frequencies. We knew that at our passband frequency, 
the filter should slowly start to decrease in dB until it hit our stopband frequency. Everything 
past the stopband frequency we knew should be cut off. Knowing this information, we plotted 
the lowpass filter using a stop band attenuation of 60, and a stopband and passband edge of 500 
Hz and 1500 Hz. As one can clearly see in figure 11, the low pass filter was correctly drawn 
using the provided inputs. The filter is 0 or close to 0 until our passband frequency and then 
decreases at an exponential rate until it hits our stopband frequency. Everything past that is 
clearly cutoff. To perform further testing, we performed another low pass filter test. This time, 
we used a stop band attenuation of 30, and stopband and passband edges of 1000 Hz and 2000 
Hz. The plot of this test is shown in figure 12 and confirms that our lowpass filter is functioning 
properly. If we wanted the first dip in our lowpass filter to be exactly at 2000 Hz, we would have 
to use a higher stop band attenuation. 
 

 
Figure 11: Low Pass filter with a stopband and passband edge of 500 Hz and 1500 Hz 
 

 

Figure 12: Low Pass filter with a stopband and passband edge of 1000 Hz and 2000 Hz 
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The second test we put our ID_Song function under was a highpass filter test. The design 
of the high-pass filter was the same as the lowpass filter design with only two modifications. The 
two modifications that we had to make was the definition the anti-aliasing filter used and the 
calculation of variable called “dev”. This variable was used in order to calculate our vector of 
coefficients, b. Our anti-aliasing filter determines where out frequency cutoff was and since the 
highpass filter only lets in higher frequencies, we had to flip our anti-aliasing filter. Instead of 
being high at first and then going low at the stopband frequency, this time the anti-aliasing filter 
went low at first and then high at higher frequencies. Similar to how we flipped the anti-aliasing 
vector, we also flipped the value of dev. We did this in order to calculate the correct vector b to 
use in our calculation of our frequency response. Changing these two variables allowed higher 
frequencies to pass through our filter and cutoff lower frequencies, as seen in figure 13. In figure 
13, we used a stopband attenuation 30, and passband and stopband edges of 1000 Hz and 1500 
Hz. To verify that this was not a fluke, we also performed a highpass filter test with a stopband 
attenuation of 40, and passband and stopband edges of 500Hz and 1000Hz. This graph can be 
seen in figure 14. We knew our function was working properly because when we increased our 
stopband attenuation, our graphs became more precise and because only lower frequencies were 
cut-off.. 
 

 
Figure 13: Highpass filter with a stopband and passband edge of 1000 Hz and 1500 Hz 

 
Figure 14: Highpass filter with a stopband and passband edge of 500 Hz and 1000 Hz 
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The third filter that was created to test our ID_Song function with was a multipath filter. 
The multipath filter’s purpose is to see how our function will react when there is multipath 
interference. Multipath interference occurs when there are multiple acoustical propagation paths 
to the microphone that is reading the song. These paths can be created by any object that has a 
high enough reflection coefficient. This test must be performed to make sure that the multipath 
interference does not hinder our ID_Song function to badly since it would be nearly impossible 
to not have multiple acoustical propagation paths when listening to a song. In order to model the 
multipaths for this filter, we create the vector b instead of calculating it. The first element in 
vector b must be 1 in order to create the direct path of the signal. Depending on how long one 
wants the multipath delay to be, the vector b must contain a number of zeros and then finally at 
the end contain another 1. The second one will model a multipath of the direct path and the 
number of zeros between the two 1 elements will determine how long the multipath delay is. The 
output of the filter is another “Score” vector which holds the “Score” values of each song when 
put through the multipath filter. In order to create the multipath filter, we first had to calculate 
the response vector, H, and the frequency vector, ff, based upon the vector of coefficients that the 
user inputs. We then created the multipath signal by applying a filter to b to obtain the transfer 
function. Using these calculated values, we made a stemplot of b to ensure that b was outputting 
the right values and a plot of the multipath filter. We created b to have a value of 1 and indices 1 
and 14, which can be seen in figure 16. By looking at the graph, it is clear that b is outputting 
exactly what we want it to. We also made sure that the multipath for this b value was created 
correctly. This plot can be seen in figure 17. To ensure that our multipath filter is working, we 
tested it with a different song input and a b vector that goes high at indices 1 and 12. This test 
can be seen in figure 18 and as one can clearly see, our multipath filter functions correctly. 

 

 
Figure 16: Vector of b coefficients where b=1 at indices 1 and 14, i.e. b= [1 0 0 0 0 0 0 0 0 0 0 0 0 1] 
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Figure 17: Multipath filter when b=1 at indices 1 and 14. 
 

 
Figure 18: Multipath filter when b=1 at indices 1 and 12. 

 
The fourth and final test that our ID_Song function has to go through is the noise test. In 

a real world setting, people usually have at least some background noise nearby them. This 
background noise can be anything from the chatter of people around them, to the sound of a TV 
in the distance. Either way, in order to understand how well our function would work in the 
presence of noise, we created a function called “Test_Noise.m” This function differs vastly from 
the previous three since it does not use a vector b to determine the paths. Instead, this function 
uses something called a Signal-Power-to-Noise-Ratio (SNR). The SNR value determines the 
level of noise in dB. The higher the snr value is, the lower the noise will be in our noisy signal. 
The output argument of this function is once again, the Score vector. The noisy signal used was 
created by following the differential equation provided labeled (1) where snr was not in dB to 
ensure that we were using correct units and the Gaussian noise vector is a randomly generated 
noise signal.  
I.e. y Gaussian noise vector)  yn =  + √ snr

power
* (  

(1) 

 
To test the noise filter, we plotted the noise free signal on the same graph as the noisy signal with 
a SNR value of 10 dB. As one can see in figure 19, the noisy vector, y_n, has slightly higher 
amplitudes than the original vector, y. This is because our SNR value is relatively low. To verify 
that that this works, we tested the same song with a SNR value of 50 dB in order to decrease the 
amplitudes of the noisy signal. This graph is shown in figure 20 and the noisy signal was shrunk 
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so much that the original signal actually has greater amplitudes than the noisy signal verifying 
that our function works.  

 
Figure 19: The noisy signal and original signal with a SNR value of 10 dB. 
 

 
Figure 20: The noisy signal and original signal with a SNR value of 50 dB. 
 

To make testing all how our ID_Song function works under these four conditions, we 
created a function called “run_tests.m” which just runs each filter once with values that might be 
found in real-life situations. After running each of the functions, the graphs of each filter appear 
and look similar to the original ones that we tested, confirming that the filters work under 
real-life conditions. 
 

Each one of our filters ran correctly and did what we wanted it to do, but what we haven’t 
talked about yet is how they affected the score vector results of each audio signal. The Score 
vector in each script held the “score” of each song after going through a given filter. In order to 
see how the score vector was affected by each filter, we compared the score vector of ID_Song, 
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which contains the 5-second song snippet without being filtered, to the score vector of all four 
filters. The Score vector for a given 5-second song snippet, y is shown in figure 21 where we can 
clearly see that the song snippet perfectly matches up to the song sample in column 10 of our 
database of songs. The first score vector we decided to compare the output of ID_Song to is the 
score vector computed after applying a lowpass filter to the song snippet. The score vector of the 
song snippet after going through the lowpass filter is shown in figure 22. We used a passband 
and stopband cutoff frequency of 500 and 550 Hz. The stopband attenuation we used is 50 dB. 
Since a stopband attenuation of 50 dB is relatively high, most of the samples are cut off after 
applying the lowpass filter. This makes sense since the stopband attenuation of a filter defines 
where frequencies will be cutoff. This means that any sample that has an attenuation that is less 
than the stopband attenuation, and a frequency that is less than the between the stopband edge 
frequency, in the 5-second song snippet is cutoff when the lowpass filter is applied.  The 
magnitudes of samples at frequencies that are not between the stopband and passband cutoff 
frequencies are either 0, if they are before the passband or cut-off if they are after the cutoff 
frequency. Any samples that are between the two frequencies are considered to be in the 
transition state and have magnitudes that are slowly decreasing for a lowpass filter. 
 

 
Figure 21: Score vector of ID_Song  
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Figure 22: Score vector of lowpass filter 
 

The next score vector we chose to compare the output of ID_Song.m to was the highpass 
filter. The score vector of the highpass filter is shown in figure 23. We ran the highpass filter 
command with a stopband attenuation of 30 dB and had the passband and stopband edges set to 
300 Hz and 390 Hz. Since the stopband attenuation of this test was lower than the previous test, 
we see that the score for the correct song is higher than the score for the correct song when run 
through the lowpass filter. This is because more samples of the signal are not cut off since more 
samples of the signal have an attenuation higher than 30 dB rather than 50 dB.  

 
Figure 23: Score vector of highpass filter 
 

We then decided to compare our ID_Song output to the score vector of the multipath 
filter. We ran our test_mp_filter command with a b vector of [1 zeros(1,850) 1]. This graph can 
be seen in figure 24. The more zeros that are put into vector b, the higher the score value will be 
for the multipath filter. This is because b is supposed to model the multipath and direct path for 
the filter. The direct path will always be the 1st index which is why the first element of b is 
always 1. The amount of zeros determines how long the multipath delay is and the second 1, 
after all the zeros, indicates the point where the second multipath delay is. Since there are 852 
vector b coefficients, and the sampling rate of our signal is 8820 , ​the multipath filter willsecond

samples  
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have a delay of . The longer the delay of the multipath filter, the higher the score852 samples
8820 samples/second  

will be because the audio signals then have longer to get to the correct location and more paths 
can be read. 
 

 
Figure 24: Score vector of multipath filter 
 

 

Finally, we compared the score of the test_noise function to the output of the ID_Song. 
We ran our test with a snr value of 10. This graph can be seen in figure 25. Since our value of snr 
is small there will be a lot of noise in our audio signal. If we wanted to decrease the noise, we 
would have to increase our snr value until the snr is high enough where the audio signal has 
greater amplitudes than the noise. Our score vector is relatively high but since there is still some 
noise present in our corrupted signal, the score vector is not equal to one. Once the audio signal’s 
amplitudes surpass the noisy signal’s amplitudes, our score vector will equal 1. 

 
Figure 25: Score vector of noisy filter 
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Completing this project was an immense feat and a valuable learning experience. The 
project was successfully completed with all the specifications met. While our program only has a 
database of 21 songs, we were able to accomplish a lot with the information we learned from 
class. We saw the effects of the filters, based upon the generated score plots, and its effect on the 
signals. Consequently, we saw in figure 26 how the time domain relates to the frequency domain 
through this project. For each filter we created, we performed tests to ensure that after putting 
our original signal, x(t), through a filter that we would still obtain a valid score plot for our y(t). 
When we passed our input signal through a lowpass filter and plotted its score, as seen in figure 
22, we were able to determine that the filter was correctly working. Even though our score was 
relatively low when the song snippet was compared to the song in the database, it was high 
enough for us to determine that our ID_Song function was still recognizing the correct song. 
After putting the same signal through a highpass filter, we saw it had a similar effect as a 
lowpass filter on the score plot. The reason why our score plot was higher in figure 23 than in 
figure 22 was because of the stopband attenuation level. When we run the highpass filter with the 
same parameters as the lowpass filter seen in figure 22, we obtain a score vector that can be seen 
in figure 28. Here we can clearly see that when the same parameters are put in for the highpass 
and lowpass filter, a very low score is obtained when the song snippet matches the song. This is 
because most of the samples at a high attenuation are cut-off. Although our multipath filter score, 
as seen in figure 24 was higher than our lowpass filter score, it was still relatively low. Even 
though we added in a good delay for the multipath filter, the score was still relatively low 
because there are ​many possible paths​  that the audio signal can take before reaching the 
microphone. Increasing the delay will increase the score of our multipath filter but if one wants 
to have the score be very high, the multipath delay will have to be at least a couple of seconds, 
not milliseconds. When doing our tests, the best score we actually obtained was from the noisy 
signal. This is because we had a positive snr value. If our snr value was 0 or lower, our score 
vector would be very low. However, we also do not need a very high snr value in order to make 
the noise completely disappear and make the score vector equal 1 when it compares the 5- 
second song input to the correct song. Once we were able to confirm that all our filters worked 
properly, we decided to test input signal for stability. Since all of our filters and our original 
input were non-recursive, we were able to determine that our inputs had no feedback. If there is 
no feedback in a difference equation, then the frequency response will have no roots in the 
denominator, which means that they are stable. This is because stability is determined based 
upon the location of the poles, and since all the poles were determined to be located at the origin, 
all of our inputs were stable.  
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Figure 26: The BIG IDEA 

 

 
Figure 27: Non-Recursive FIR filter 
 

 
Figure 28: Highass filter score 
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